Module vipy.data.kitti
Expand source code Browse git
import os
from vipy.dataset import Dataset
from vipy.image import Scene, Image
from vipy.util import try_import
from vipy.object import Detection
class KITTI(Dataset):
"""A thin wrapper around torchvision.datasets to import into vipy.dataset format.
https://docs.pytorch.org/vision/main/generated/torchvision.datasets.Kitti.html
"""
def __init__(self, rootdir, download=False, split='train'):
try_import('torchvision.datasets', 'torchvision');
import torchvision.datasets
dataset = torchvision.datasets.Kitti(rootdir, download=download or not os.path.exists(os.path.join(rootdir, 'Kitti')), train=split=='train')
loader = lambda r: (Scene(objects=[Detection(category=d['type'], ulbr=d['bbox'], attributes=d) for d in r[1]]) if r[1] is not None else Image()).loader(Image.PIL_loader, r[0])
super().__init__(dataset, id='kitti:'+split, loader=loader)
Classes
class KITTI (rootdir, download=False, split='train')-
A thin wrapper around torchvision.datasets to import into vipy.dataset format.
https://docs.pytorch.org/vision/main/generated/torchvision.datasets.Kitti.html
Expand source code Browse git
class KITTI(Dataset): """A thin wrapper around torchvision.datasets to import into vipy.dataset format. https://docs.pytorch.org/vision/main/generated/torchvision.datasets.Kitti.html """ def __init__(self, rootdir, download=False, split='train'): try_import('torchvision.datasets', 'torchvision'); import torchvision.datasets dataset = torchvision.datasets.Kitti(rootdir, download=download or not os.path.exists(os.path.join(rootdir, 'Kitti')), train=split=='train') loader = lambda r: (Scene(objects=[Detection(category=d['type'], ulbr=d['bbox'], attributes=d) for d in r[1]]) if r[1] is not None else Image()).loader(Image.PIL_loader, r[0]) super().__init__(dataset, id='kitti:'+split, loader=loader)Ancestors
Inherited members
Dataset:balancedbatchchunkchunksclonecounteven_splitfilterfrequencyfrom_directoryfrom_image_urlsgroupbyididentity_shufflerindexinverse_frequencylistloadlocalmapmapminibatchpartitionpipelinerawrepeatsamplesetshiftshuffleslicesortsplitstreaming_mapstreaming_shufflertaketake_fractiontakebytakelisttakeonetruncatetupleuniform_shufflerzip